#### Introduction: Why electrons?

1

# Radiations

|               | Advantages                                                    | Disadvantages                                       |
|---------------|---------------------------------------------------------------|-----------------------------------------------------|
| Visible light | Not very damaging<br>Easily focused<br>Eye wonderful detector | Long wavelengths (~400 nm)                          |
| X-rays        | Small wavelength (Angstroms)<br>Good penetration              | Hard to focus<br>Damage sample                      |
| Electrons     | Small wavelength (pm)<br>Can be focused                       | Damage sample<br>Poor penetration                   |
| Neutrons      | Low sample damage<br>Small wavelength (pm)                    | Hard to produce in controlled ways<br>Hard to focus |

#### The structural biology continuum



#### Introduction - Why electrons? Concept check questions:

- What are the advantages and disadvantages of electrons compared to photons for microscopy? Neutrons?
- What structural biological technologies give higher resolution information than cryo-EM, and what kinds of samples and questions can they address?
- What structural biological technologies complement cryo-EM at lower resolutions, and what kinds of questions and samples do they address?

#### Electron Guns

# Electron "guns"



- Tungsten filaments
- Lanthanum hexaboride (LaB<sub>6</sub>) crystals
- Field emission guns



# Two types of coherence

• **Spatial**: do all the electrons come from the same direction?

• **Temporal**: do they all have the same speed?

#### I. Tungsten filaments



Bozzola and Russell, Fig. 6.22

#### 2. Lanthanum hexaboride (LaB<sub>6</sub>) crystals



#### 3. Field emission gun



http://www.fisica.unige.it/~rocca/Didattica/ Laboratorio Bozzola and Russell, Fig. 6.26

#### Electron guns Concept check questions:

- Where do the imaging electrons in an electron microscope come from?
- What part of the gun is called the "cathode"? What should be called the "anode"?
- What is the accelerator stack a "stack" of?
- What voltages are typically used in transmission electron microscopes?
  What kinds of electron wavelengths does this correspond to?
- What does it mean to "condition" the gun?
- What is the difference between spatial and temporal coherence?
- What are the three main types of electron guns? What are the advantages and disadvantages of each?

#### Electron lenses

Lenses "focus" divergent rays



#### Lenses introduce the possibility of magnification



1/f = 1/u + 1/v M = v/u

#### An electron lens





#### Electron lenses Concept check questions:

- What is the defining property of a "lens"?
- Why/how do optical lenses focus light?
- Draw a diagram that shows how a lens can be used to form a magnified image. What parameters determine the magnification?
- How do electron lenses focus electrons?
- Why do electron images rotate in an electron lens?
- What are the four main components of an electron lens system? What does each do?

### Column

current (filament) filament Wehnelt cylinder bias (emission) Gun voltage (high tension) Accelerator stack gun shift, tilt "gun" deflectors 8 spot size Condenser Condenser lenses intensity lens system condenser stigmatism Condenser stigmators 0 0 size, centering Condenser aperture "beam" deflectors beam shift, tilt 0 D Objective position, z-height, tilt specimen lens **Objective lens** focus system objective stigmatism 0 Objective stigmator 0 size, centering **Objective** aperture 0 image shift, tilt "image" deflectors 0 D Projector magnification lens "intermediate" lenses system "diffraction" stigmator 0 D "selected area" aperture "projector deflectors" divert to TV D 0

Viewing screen

down, up for CCD





Calibration



### The column Concept check questions:

- What are the three main lens systems in an electron microscope called?
- What is meant by a "conjugate plane"?
- What are the special names given to the three independent sets of deflectors?
- What current is controlled by the "filament" knob? "emission"? "spot size"? "intensity"? "focus"? "magnification"?
- What is controlled by the "high tension" knob?
- What is a "crossover"?
- Which knob controls whether the microscope is in "LM," "M," or "SA" mode? What currents change?
- What are "pivot points"?
- What does it mean to "align" the microscope?
- What is "hysteresis"?
- What does the "normalize" button do?

### Sample chamber





#### The sample chamber Concept check questions:

- In what directions/ways can the sample be moved while in the microscope?
- What is an "air-lock", and how it is relevant to the sample chamber?
- Where does the sample rest with respect to the objective lens?
- What is the "pole piece gap"?
- What is a "cryo-box"?
- What is "eucentric height"? Is it different for every grid?

# Energy filters





#### Energy filters Concept check questions:

- Why are EM energy filters used?
- How are "post-column" filters different from "in-column" filters?
- What is a typical slit width for cryo-EM?
- What is a "zero-loss" peak?
- How could an energy filter allow you to image where a particular element was in the sample?

#### Electron detectors

#### Electron detectors

- Photographic film
- TVs
- CCDs
- Fluorescent screens
- "Direct" detectors

#### CCD detectors











Single 2.5 ms frame using conventional CCD-style charge read-out



Same frame after counting

Counting removes the variability from scattering, rejects the electronic read-noise, and restores the DQE.



#### Electron detectors Concept check questions:

- Name five different types of electron detectors.
- What is a "CCD"? How do they work?
- What are the advantages and disadvantages of film versus CCDs?
- What is meant by "direct" detector?
- What new capabilities do direct detectors provide?

### Vacuum systems

"mechanical" (rotary) pump



Bozzola and Russell, Fig. 6.37A

#### Oil-diffusion pump



Bozzola and Russell, Fig. 6.38C

#### Turbo-molecular pump



Bozzola and Russell, Fig. 6.42

## "Ion getter" pump





#### Vacuum systems Concept check questions:

- Name four different types of vacuum pumps. How does each work?
- Why are so many different types of pumps needed?
- What is a "backing" pump?

# Summary, safety



lead shielding SF<sub>6</sub> water high voltage liquid N<sub>2</sub> climbing freezing burns

#### Summary, safety Concept check questions:

- What is the purpose of the heavy lead shielding covering electron microscopes?
- Why do electron microscopes need chilled water?
- Name three lethal and at least one more non-lethal hazards associated with electron cryo-microscopes.