Part 7: Electron crystallography

Basic approaches in cryo-EM

Tomography

Single particle analysis

2D crystallography

Some proteins naturally assemble into 2D arrays

Grigorieff et al., JMB 1995

Second example: aquoporin

Gonen et al., Nature 2004

Others can be crystallized in-vitro

RNA polymerase

Courtesy Roger Kornberg

After formation, crystals can be embedded in a sugar like trehalose and dried, or plunge-frozen

embedded in trehalose between two layers of continuous carbon film

adsorbed onto holey carbon film and plunge-frozen

Abeyrathne et al., MIE 2010

2-D crystallography - Intro and sample prep Concept check questions:

- What is a "2-D crystal"?
- When is 2-D crystallography the cryo-EM approach of choice?
- Describe a method for inducing a protein of interest to form a 2-D crystal.
- In addition to plunge-freezing, what other way have 2-D crystals been stabilized for EM imaging?

The Fourier transform of an asymmetric object

Boisset et al., Ultramicroscopy 1998

Orlova and Saibil, Chemical Reviews 2011

Boisset et al., Ultramicroscopy 1998

Fourier transform of a 2-D crystal Concept check questions:

- Why does the Fourier transform of a crystalline object have discrete spots separated by pixels with near-zero amplitudes?
- What is the convolution theorem, and what does it have to do with crystallography?
- What does the Fourier transform of a 2-D crystal look like?
- What is the "missing cone," why is it "missing," and what effect does it have on 2-D crystallographic reconstructions?

In electron crystallography, the best measurements of amplitudes come from diffraction patterns, but images are recorded to obtain phases "diffraction mode" "imaging mode" Amps - better phases 1.3 CC

Example images and diffraction patterns from aquaporin crystals

Aquaporin crystal

Electron diffraction pattern of an untilted crystal

n Electron diffraction pattern of a crystal tilted to 70° Gonen et al., Nature 2004

Example lattice line data (amplitude and phase) and curve fitting

Nogales et al., Nature 1998

Crystal "unbending"

Braun and Engel, Encyclopedia of Life Sciences 2005

Challenges in 2D crystallography

- Hard to get well-ordered crystals
- Hard to get flat crystals
- Charging, beam-induced movement can blur images
- "Missing cone"

2-D crystallography - Data collection and reconstruction Concept check questions:

- What is the difference between "imaging" and "diffraction" modes on an EM?
- Why are both images and diffraction patterns of 2-D crystals recorded in a 2-D crystallography project?
- Why are images of both untilted and tilted samples recorded?
- How is all the data from all these images and diffraction patterns merged to produce the reconstruction?
- What is crystal "unbending"? How and why is it done?
- Describe four common challenges in 2-D crystallography projects.

Helical tubes are "rolled up" versions of 2-D crystals, can be rolled up into different families of tubes with different pitches

Miyazawa et al., JMB (1999)

Cryo-EM projection image of a helical tube of purified HIV CA protein b

Su Li et al. Nature 2000

Power spectrum shows "layer lines"

3D reconstruction

Helical tubes Concept check questions:

- How are helical tubes related to 2-D crystals?
- Why are helical tubes particularly good samples for cryo-EM reconstruction?
- What does the diffraction pattern of a helical tube look like?