Part 2: Fourier transforms

Key to understanding NMR, X-ray crystallography, and all forms of microscopy

y(t) = A sin(wt + p)y(x) = A sin(kx + p)

To completely specify a sine wave, you need its

(I) direction,

- (2) wavelength or frequency,
- (3) amplitude, and
- (4) phase shift

Adding sine waves

Taking sine wave sums apart

(a Fourier "decomposition", or "transform")

Fourier transforms in music and hearing

Fourier decompositions may not be exact - depends on how many terms you use ("resolution")

The mathematical details

$$f(x) = \frac{A_0}{2} + \sum_{m=1}^{\infty} A_m \cos\left(\frac{2\pi mx}{\lambda}\right) + \sum_{m=1}^{\infty} B_m \sin\left(\frac{2\pi mx}{\lambda}\right)$$

$$A_{m} = \frac{2}{\lambda} \int_{0}^{\lambda} f(x) \cos\left(\frac{2\pi m x}{\lambda}\right) dx$$
$$B_{m} = \frac{2}{\lambda} \int_{0}^{\lambda} f(x) \sin\left(\frac{2\pi m x}{\lambda}\right) dx$$

The balance between sine and cosine terms can be equivalently introduced by giving each sine term a "phase"

One-dimensional sine waves and their sums Concept check questions:

- What four parameters define a sine wave?
- What is the difference between a temporal and a spatial frequency?
- What in essence is a "Fourier transform"?
- How can the amplitude of each Fourier component of a waveform be found?

10 numbers + 2 (5 amps & phases + "DC" component)

10 numbers

- A_0 = amplitude of "DC" component
- A_1 = amplitude of "fundamental" frequency (one wavelength across box)
- P_1 = phase of "fundamental" frequency component
- A_2 = amplitude of first "harmonic" (two wavelengths across box)
- P_2 = phase of first harmonic
- A_3 = amplitude of second harmonic
- P_3 = phase of second harmonic

etc.

 A_5 = amplitude of "Nyquist" frequency component

One dimensional functions and transforms (spectra)

Hecht, Fig. 11.13

One dimensional functions and transforms (spectra)

Hecht, Fig. 11.13

More complicated functions and their spectra

One-dimensional reciprocal space Concept check questions:

- What is the difference between an "analog" and a "digital" image?
- What is the "fundamental" frequency? A "harmonic"? "Nyquist" frequency?
- What is "reciprocal" space? What are the axes?
- What does a plot of the Fourier transform of a function in reciprocal space tell you?

In microscopy we deal with 2-D images and transforms

Two-dimensional waves and images Concept check questions:

- What does a two-dimensional sine wave look like?
- What do the "Miller" indices "h" and "k" indicate?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	/ I	0	0	0	0
0	0	0	4	_3_	/ 5_	8	0	0	0
0	0	3	9	9	9	9	3	0	0
0	0	\$	9	9	9	9	3	0	0
0	0	6	9	9	9	9	2	0	0
0	0	$\overline{\mathbf{v}}$	9	9	9	9	1	0	0
0	0	2	-5_	_7_	8	6	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

N² numbers

Х

~N² numbers

Fourier transform

У

A simple 2-D image and transform (diffraction pattern)

у

More complex 2-D images and transforms

Briegel et al., PNAS 2009

"Resolution"

Note here the "power" or intensity of each Fourier component is being plotted, not the phase, and for any real image, the pattern is symmetric

"band pass" filter

http://sharp.bu.edu/~slehar/fourier/fourier.html

Two-dimensional transforms and filters Concept check questions:

- In the Fourier transform of a real image, how much of reciprocal space (positive and negative values of "h" and "k") is unique?
- If an image "I" is the sum of several component images, what is the relationship of its Fourier transform to the Fourier transforms of the component images?
- What part of a Fourier transform is not displayed in a power spectrum?
- What does the "resolution" of a particular pixel in reciprocal space refer to?
- What is a "low pass" filter? "High pass"? "Band pass"?

In X-ray crystallography, 3-D microscopy, and 3-D NMR we deal with 3-D images and transforms

~N³ numbers

Three-dimensional waves and transforms Concept check questions:

- What does a three-dimensional sine wave look like?
- What does the third "Miller" index "l" represent?

Convolution f(x) 1 \uparrow (\uparrow) h(x)føh $g(i) = f \otimes h = \int f(x) h(i-x) dx$ 🚥 🖑 🗆 [] 2:30 / 15:05 D

Convolution

PSF $g(i,j) = f \otimes h = \int_{a}^{b} \int_{a}^{b} f(x,y) h(i-x, j-y) dx dy$ $\Im_{a}^{b} = \Im_{a}^{b} \int_{a}^{b} \int_{a}^{$ Wikipedia: convolution 6:47 / 15:05 Ф

Crosscorrelation

Zhu et al., JSB 2004

Convolution and cross-correlation Concept check questions:

- What is a "convolution"?
- What is the "convolution theorem"?
- What is a "point spread function"?
- What does convolution have to do with the structure of crystals?
- What is "cross-correlation"?
- How might cross-correlations be used in cryo-EM?